3,345 research outputs found

    Perfect Teleportation and Superdense Coding With W-States

    Get PDF
    True tripartite entanglement of the state of a system of three qubits can be classified on the basis of stochastic local operations and classical communications (SLOCC). Such states can be classified in two categories: GHZ states and W-states. It is known that GHZ states can be used for teleportation and superdense coding, but the prototype W-state cannot be. However, we show that there is a class of W-states that can be used for perfect teleportation and superdense coding.Comment: 9 pages, no figur

    Background Independent Quantum Mechanics, Metric of Quantum States, and Gravity: A Comprehensive Perspective

    Full text link
    This paper presents a comprehensive perspective of the metric of quantum states with a focus on the background independent metric structures. We also explore the possibilities of geometrical formulations of quantum mechanics beyond the quantum state space and Kahler manifold. The metric of quantum states in the classical configuration space with the pseudo-Riemannian signature and its possible applications are explored. On contrary to the common perception that a metric for quantum state can yield a natural metric in the configuration space with the limit when Planck constant vanishes, we obtain the metric of quantum states in the configuration space without imposing this limiting condition. Here, Planck constant is absorbed in the quantity like Bohr radii. While exploring the metric structure associated with Hydrogen like atom, we witness another interesting finding that the invariant lengths appear in the multiple of Bohr radii.Comment: 25 Pages;journal reference added:Published in- Int. J. Theor. Phys. 46 (2007) 3216-3229. References revise

    Resources required for exact remote state preparation

    Get PDF
    It has been shown [M.-Y. Ye, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A 69, 022310 (2004)] that it is possible to perform exactly faithful remote state preparation using finite classical communication and any entangled state with maximal Schmidt number. Here we give an explicit procedure for performing this remote state preparation. We show that the classical communication required for this scheme is close to optimal for remote state preparation schemes of this type. In addition we prove that it is necessary that the resource state have maximal Schmidt number.Comment: 7 pages, 1 figur

    Inseparability of Quantum Parameters

    Full text link
    In this work, we show that 'splitting of quantum information' [6] is an impossible task from three different but consistent principles of unitarity of Quantum Mechanics, no-signalling condition and non increase of entanglement under Local Operation and Classical Communication.Comment: 9 pages, Presented in Quantum Computing Back Action in IIT Kanpur (2006). Accepted in International Journal of Theoretical Physic

    Probabilistic Super Dense Coding

    Full text link
    We explore the possibility of performing super dense coding with non-maximally entangled states as a resource. Using this we find that one can send two classical bits in a probabilistic manner by sending a qubit. We generalize our scheme to higher dimensions and show that one can communicate 2log_2 d classical bits by sending a d-dimensional quantum state with a certain probability of success. The success probability in super dense coding is related to the success probability of distinguishing non-orthogonal states. The optimal average success probabilities are explicitly calculated. We consider the possibility of sending 2 log_2 d classical bits with a shared resource of a higher dimensional entangled state (D X D, D > d). It is found that more entanglement does not necessarily lead to higher success probability. This also answers the question as to why we need log_2 d ebits to send 2 log_2 d classical bits in a deterministic fashion.Comment: Latex file, no figures, 11 pages, Discussion changed in Section

    Enhancement of Geometric Phase by Frustration of Decoherence: A Parrondo like Effect

    Get PDF
    Geometric phase plays an important role in evolution of pure or mixed quantum states. However, when a system undergoes decoherence the development of geometric phase may be inhibited. Here, we show that when a quantum system interacts with two competing environments there can be enhancement of geometric phase. This effect is akin to Parrondo like effect on the geometric phase which results from quantum frustration of decoherence. Our result suggests that the mechanism of two competing decoherence can be useful in fault-tolerant holonomic quantum computation.Comment: 5 pages, 3 figures, Published versio

    An Atypical Case of Pelvic Leiomyomatosis Peritonealis Disseminata

    Get PDF
    An exceptional case of Leiomyomatosis peritonealis disseminata which occurred in a perimenopausal woman was mistaken for ovarian malignancy at laparotomy as it had extensive involvement of the pelvic peritoneum without a trace of leiomyoma in uterus and cervix

    Geometric Phases for Mixed States during Cyclic Evolutions

    Full text link
    The geometric phases of cyclic evolutions for mixed states are discussed in the framework of unitary evolution. A canonical one-form is defined whose line integral gives the geometric phase which is gauge invariant. It reduces to the Aharonov and Anandan phase in the pure state case. Our definition is consistent with the phase shift in the proposed experiment [Phys. Rev. Lett. \textbf{85}, 2845 (2000)] for a cyclic evolution if the unitary transformation satisfies the parallel transport condition. A comprehensive geometric interpretation is also given. It shows that the geometric phases for mixed states share the same geometric sense with the pure states.Comment: 9 pages, 1 figur
    corecore